
CI 

El   

SCIENCE 
IN BUILDING BETTER FUTURE 

Redakcja naukowa 

El & Agata Buda 

Wydawnictwo Uniwersytetu Technologiczno-Humanistycznego w Radomiu 

Radom 2018 

Monografia 222 



Recenzenci: 
Doc. Ing. Ladislav Rudolf, Ph. D., University of Ostrava  
Dr Krzysztof Symela, ITE-PIB w Radomiu 

Redakcja naukowa 
El

Opracowanie wydawnicze 
Monika Fetra

Robert Bondarowicz 

anuta Szeligiewicz-Urban, 

Hajnalka Torma, Grzegorz Kiedrowicz, Igor 
nik

ik, Milan Helexa, Victoria H. Bakonyi, 

czny im. Kazimierza  

26-600 Radom, ul. Malczewskiego 29 
www.uniwersytetradom.pl, e-mail:wydawnictwo@uthrad.pl 

ISSN 1642-5278 
ISBN 978-83-7351-860-5 

ci ani we fragmentach nie mo e by  rozpowszechniana ani po-
wielana za pomoc  urz dze  elektronicznych, kopiuj cych, nagrywaj cych  
i innych bez pisemnej zgody posiadacza praw autorskich. 

Wyd. I 



THE MOST DIFFICULT NOTION OF PROGRAMMING:  
THE VARIABLE 

Everyday algorithms 
The fact that during our everyday activities we perform a number of algorithms, 

from sequences, branches, and repetitions, to non-deterministic and parallel 
structures, facilitates our conception of the algorithm. [1, 2, 5] 

Interestingly enough, there are programming languages designed for beginners 
(like ELAN), in which the concept of algorithm is included, but not the concept of 
data. [5] 

The data world appears in manifold ways: first the data are some kind of 
objects, which can be grouped into classes (and not as variables in the traditional 
sense). Such a class is the family, where there is a mother, a father, children, etc. 
The elements (objects) of the class are the specific family. In everyday algorithms 
such objects appear in diverse forms; in default cases their values are constant, only 
rarely variable. 

Side-note: Typically, beginners are wary of the concepts of class and object-
oriented programming. The reason for this is that, contrary to the above mentioned, 
everyday-world experience of the concept, in the classical, von Neumann-style 
execution of the program the coder is sitting in th
is performing the program sequentially. This parallelism, implicitly or explicitly 
present in the object-oriented approach, creates confusions. To avoid this, so-called 
seeded objects (like the turtle in Logo or the cat in Scratch) are built into languages 
for beginners. 

Interestingly, the structures of the classes are complex straight away; the basic 
types appear only as parts of the class structure. Contrarily, programming 
education almost always begins with basic types. The primary composition mode is 
the direct multiplication (the record concept), which can be complemented by 
special multitudes: a set of clothes, queue in the supermarket, etc. 

Arrays appear in an odd way too; their indices can be the floors an elevator 
passes (negative indices are possible too), or the stations of a railway (where the 
index can be the very name of the station). In this sense, we can call arrays as 
indexed structures. 

The role of mathematics
It is mathematics that introduces number types (integer, real; even if 

mathematics uses natural and rational numbers as well) and sequences (infinite is 
possible in mathematics) into the data world. The latter can lead to the concept of 
the array. 



109

Then there are the matrices as well, but we can bump into two-index structures 
much earlier, for example during spreadsheet operations; in fact, they can even 
precede the sequence concept of mathematics. 

The peculiarity of spreadsheets is that they are no
could traditionally call variables, rather a functional model of solving a problem 
[3]. In certain cells there are constants, while in others functions applied for 
specific cells or cell groups. Therefore, functions by definition have parameters. In 
default cases, however, we calculate all these functions together. If the value of 
given cells change, the functions are recounted. Instead of the algorithmic 
activities, which would apply variables, this model features operations (such as 
sum, maximum, etc.) defined for ranges (table parts). [7] 

Note that everyday algorithms contain similar calculations too (for example, if 
we buy three cappuccinos, for 2 EUR per piece, then we will pay 6 EUR), but not 

Why is programming difficult? 
Many articles have already been written about the difficulties of teaching 

programming. Hofuku et al. [4] illustrate it by a very simple example-pair: 

 display  
a string Hello 10 times. To understand these programs, learners should know 
variables, data type (int), variables initialization, assignment, compare operators, 
Boolean values and increment operator. Many concepts are necessary to 
understand these simple structures.
to the concept of the variable.  

Nevertheless, a drawing procedure in Logo, drawing a square with :n side 
length, causes much less trouble. We draw a square with :n side length by repeating 
making :n steps forward and turning 90 degrees to the right four times. 

Therefore, here there is no need for the classical concept of the variable.  



110

Types of variables 
Kuittinen and Sajaniemi [6] summarize the roles and types of variables in the 

following table (Table 1). 

Table 1. 

Role Informal definition 

Fixed value 
A variable which is initialized without any calculation and whose 
value does not change thereafter. 

Stepper 
A variable stepping through a succession of values that can be 
predicted as soon as the succession starts. 

Most-recent 
holder 

A variable holding the latest value encountered in going through  
a succession of values. 

Most-wanted 
holder 

far in going 
through a succession of values. There are no restrictions on how to 
measure the goodness of a value. 

Gatherer 
A variable accumulating the effect of individual values in going 
through a succession of values. 

Transformation 
A variable that always gets its new value from the same calculation 
from value(s) of other variable(s). 

Follower A variable that gets its values by following another variable. 

One-way flag 
A two-valued variable that cannot get its initial value once its value 
has been changed. 

Organizer 
An array which is only used for rearranging its elements after 
initialization. 

Temporary A variable holding some value for a very short time only. 

Other Any other variable. 

Our categorization shares some of the elements of the above table. Our 
methodology, however, fits better with constructivist pedagogy, reflecting the path 
how learners get in contact with variables during their studies and how they get to 
understand their concept. It will also become clear that the two main groups of our 
categories are linked to whether the concept of assignment has already been 
introduced or not. Accordingly, the first group contains variable types where 
assignment is not yet present. 

constants of other subjects (e, pi, g, etc.), which are essentially numerical constants 
with names. They are not variables in the sense that practically they replace  
a character sequence. (As a consequence, programming languages typically assign 
the given value to such constants while translating the code; that is, they are in fact 
not treated as variables.) These constants generally do not even appear in the 
description of tasks (or their names may come up but it is their value that needs to 
be used). 



111

Constants in task descriptions play a similar role. For example, from the 
comes that we could name 100, 

just like pi, as maxn for instance. Such constants (with or without name) can appear 
in task descriptions or input conditions. Nevertheless, they will also be added to the 
code during translation. 

There are constants (so-called quasi constants) which appear as constants for 

they will turn up as special variables that will get value at some point (as the data 
are retrieved), and then we will use them only for calculating. In several classical 
programming tasks input variables will not change after being retrieved. 

In many cases it might occur that the retrieved values can be considered 
constants but we use a value sequence for the same variable and we even process it 
right away. Such constants can be called quasi constants for multiple purposes.  

Perhaps the first notion that can be truly interpreted as a variable is the state 
component, such as the position, the direction, etc. of the turtle in the Logo 
language. We can get the values of the state component, and we can also change 
them with the help of the dedicated functions or operations. Nevertheless, the 
assignment in the classical sense should be avoided in the case of state 
components. Most often state components have their name, so there is no need for 
a new definition. 

The notion of parameter is brought in by the procedure (function). In the 
functional approach (and, for example, in the turtle graphics of Logo, too) 
parameter is essentially the name of the value, which will be copied in the place of 
the parameter during function call (with lazy evaluation a bit later). In this case, 
every parameter is strictly input parameter only; thus, value is assigned only once, 
which does not change. The result of the function is a value (perhaps complex), 
which might be the part of an arbitrary expression.

The first data appearing really as variables come up when we need to calculate 
formulas. These are called variables calculated from others (x:=f(y)). Their role 
lies in their names, so essentially these variables are the names of function values, 
which are stored in variables in classical programming languages. 



112

The above algorithm can be easily built on a functional approach: let us 
calculate something with the input data and write out its result: 

With this functional thinking can facilitate and prepare the introduction of 
variables (which is why it is useful to apply programming languages containing 
functional programming elements, like Logo, or spreadsheets built on functional 
bases). 

Variables, calculated from others, containing only value (y:=f(x); z:=y*(y+1)) 
are used only for the purpose of efficiency, shortening, etc. In the following 
algorithm excerpt, aimed to calculate the second-based time difference between 
two dates, TA and TB are such variables. 

When processing data multitudes (like sequences, sets, etc.) we might need to 
handle each of their elements, for which variables applied for a given range can be 
used. Such are direct or indirect loop variables. 

Certain loop types may allow for the partial traversal of a structure as well. 
The above data (may they be constants or variables) do not logically require the 

related but more complicated notion of assignment. The classical notion of 
assignment is the generalization of the memory cell of von Neumann-type 
computers. We can load data into this named storage; we can get and change them, 
among others. Consequently, such a notion of the variable does not need to be 
present in all computing models. 

State variables can have a special role. In simple cases they are logical values 
(like processed, unprocessed) or with classical graph traversal they are the colors 
denoting the state of the points (white, grey, or black). State variables are similar to 
the state components of the turtle or robots, but here assignment commands make 
sense, traditional variables are involved. 

We often use state variables for ending loops. 



113

Programming based on the theory of finite automata frequently applies such 
state variables. 

There are several operations, with which we can add or distract elements in data 
multitudes. These are the variables changing the number of elements (such as 
stack, queue, etc.). They lack classical assignment, but they have push, pop, etc. 
operations. The elements we add or distract, however, are classical variables, 
which can undergo any kind of operation. 

Assignment is probably the hardest to understand with variables cumulating  
a specific value. The main difficulty with them is that in many languages the 
description of assignment highly resembles the description of equation check in 
mathematics (for example, C++: x=f(x,y)), which is mathematical nonsense. Such 
variables collect the values of a data structure with some cumulative operation. 

A classical version is summation: 

or maximum selection: 

The variable of classical counting loops can be such cumulating-type variables: 

where the changes of the i variable is often marked with special commands (for 
example, i++, inc(i)). 



114

Variables calculated recursively, from their own previous value are similar to 
cumulative variables. They frequently appear in mathematical tasks. While the 
factorial can be described with a simple cumulative variable: 

with Fibonacci numbers it is easier to calculate the next element of the sequence 
from the previous values (which not surprisingly is simpler to understand than the 
cumulative variable of the factorial). 

Frequently, we need to perform operations on data or data multitudes that are 
trivial to do parallelly, but for a sequential execution we need temporary storage 
space, for example swapping two variables: 

Parallelly Sequentially 

or the cyclic rotating of a sequence: 

Similar to state variables are . 
Typically we need them when we want to process a multitude by completely 
traversing it, but as a result we expect just one element, for example such a variable 



115

is the one containing the index of the maximum value element in maximum 
selection: 

If the formation time and the processing time of the data are different (in time or 
order), we need variables to temporarily store the data in a given order (stack, 
queue, dequeue, priority queue, etc.). These are the variables defining processing 
order. 

Another group of the variables (and with this one we are getting far from the 
first types) constitutes variables describing relations. They are typically used in 
hierarchical and network data structures (trees, graphs, etc.), but structures linked 
from a certain aspect are similar too. 

The above categorization is summarized below. 

Table 2. 
Group name Informal definition 

Numerical constants 
with names 

Names to substitute character sequences, behind which there are 
clearly defined values, like e, pi, g, etc. 

Constants in task 
descriptions 

Constants which can appear for example in input conditions. 

Quasi constants 
They appear as constants for people, but in the program they will 
turn up as special variables that will get value only when 
retrieved. 

State components 
We can get or change their values, but assignment in the classical 
sense should be avoided. 

Parameters 
Name of the value which will be copied in the place of the 
parameter upon function call (with lazy evaluation a bit later). 

Variables calculated 
from others 

Names of function values which are stored in variables in 
classical programming languages. 

Variables applied for 
a given range 

Such are direct or indirect loop variables. 

State variables 
Compared to state components, the notion of assignment 
commands is included. 

Variables changing 
the number of 

elements 

The operations for adding or distracting elements in data 
multitudes, they do not involve classical assignment. 



116

cd. Tabele 2.  
Group name Informal definition 

Variables changing 
the number of 

elements 

The operations for adding or distracting elements in data 
multitudes, they do not involve classical assignment. 

Variables 
cumulating a 
specific value 

They collect the values of a data structure with some cumulative 
operation. 

Variables calculated 
recursively, from 

their own previous 
value 

Variables which are calculated from their own previous value  

Temporary storage 
space 

Variables that store data for only a very short time.  

Variables storing 
some other 

When we want to process a multitude by completely traversing 
it, but as a result we expect just one element. 

Variables defining 
processing order 

Variables which temporarily store the data in a given order. 

Variables describing 
relations 

Variables which describe the relations of hierarchical and 
network data structures. 

All other variables 
Every variable that does not belong in any of the above is 
categorized into this group. 

Comparative analysis  
with ours, this what we can 

conclude: 
Both categorizations follow constructivist principles. 

category. 

lating a specific 
tion that gives value to  

a variable, and it depends on the programming theorem behind the function 

calculated recursively, from their own previous val
opinion, it is important to make a distinction here because wherever the 
concept of recursion comes up, it is a different level of cognition compared 
to cumulative variables. 



117

constants used for 

The rest of the groups cannot be matched directly. It is worth noting that 
Kuittinen and Sajaniemi do not take into account whether assignment has 
already been introduced into the learning process or not, whereas in our 
categorization it was a key factor. On the other hand, our grouping was based 
on the everyday concept of algorithm. 
The different categories and concepts of the variables are related to each 

Figure 1 

Conclusion 
When introducing the concept of the variable, it is best to apply approaches 

which are based on the data concept of everyday thinking. 
This is close to the core concept of one-object languages (Logo, Scratch), 

except that even in these languages we should avoid the use of variables (Logo is 
much more suitable for this, because apart from the state components of the turtle 
everything else can be a parameter). Functionalization (such as spreadsheets or 

 introducing the concept of the 
variable. 



118

References 
1. Bell T., Witten I. H., Fellows, M., Computer Science Unplugged, An 

Enrichment And Extension Programme For Primary-Aged Children, 
http://csunplugged.org 

, XXX. 
Didmattech 2017, Trnava University in Trnava, 2018, pp. 40-51. 

3. Cunha J., Fernandes J.P., Mendes J., Saraiva J., Spreadsheet Engineering, 
6, pp. 246-299. 

4. Hofuku Y., Cho S., Nishida T., Kanemune S., Why is programming difficult? 
and a prototype tool for 

, (In:) Informatics in Schools. Sustainable Informatics 
Education for Pupils of all Ages, Springer, Potsdam 2013. 

5. Koster C.H.A., Systematisch leren programmeren, Educaboek, 1984. 
6. Kuittinen M., Sajaniemi J., Teaching Roles of Variables in Elementary 

Programming Courses
https://pdfs.semanticscholar.org/11ce/7795412e240c3af8b88d97087994f9d29
0bc.pdf 

Tahy Z., heet 
application  pp. 15-22. 

Summary
One of the hardest notions to define in programming is the variable and the 

related command of assignment. In our opinion, these are exactly these difficulties 
that are responsible for the reluctance towards programming. The reason for this, 
according to us and others [6], is the multifunctional nature of the variable: it can 

languages is markedly different in this respect. 

Keywords: programming, variable, programming methodology. 


