INFODIDACT (2008), 111-141 Teaching
tmcs@inf.unideb.hu Mathematics and
htip://tmes.math kite.hu Computer Science

Expressiveness of programming
languages and environments: a
comparative study

YABOR TORLEY

Abstract. In written and oral communication tools. the support of the understanding of
our message have an important role: we can increase the expressiveness and the level
ol understanding ol our topic by approaching it in several ways, i.e. in written methods
by highlighting the important parts: in oral by changing tone and other elements of
non-verbal communication. In this paper programming languages and developing en-
vironments are compared with each other in terms of their methods and their level of
support to the solution of progranmming tasks.

There is a need to have these tools in programming and, of course, in teaching
programming. What are the factors that define the distinctness and the legibility ol a
program? What are the basic principles which give an instrument in programmers’ and
students” hands in order to create a properly working program from already existing
ulgoritlnns in the most eflicient way? We search for the answers to these questions in
this paper.

Key words and phrases: programming languages, teaching programming, programming
environmments, expressiveness, secondary school education.

ZDM Subject Classification: P43, P44. P53, P54.

1. Introduction

We want to add new knowledge to the ways programming is taught. We
are not interested in the educational problems of the first steps. Instead, we
arc concerned with the relation between the style of programming and the lan-
euage, which is to be dealt with in the early stages of learning. We assume that

Copyright © 2008 by University of Debrecen

112 Gidbor Torley

the learner already knows the basic algorithm elements (sequence, brancli, loop,
procedure. function, use of variables) and he/she has previous experience in a
programming language (supposedly Comenius Logo or Imagine).

According to our definition, “crpressiveness” is the feature of programming
languages which (with its structure, syntax, etc.) supports the solution of a
programming task. The more expressive the language is, the less mental effort and
time is needed by the programmer during coding. i.e. an appropriate question can
be whether the langnage hinders or supports the composition of the program if the
algorithin is already known. This problem is similar to the well-known question
in arithmetic: What kind of impact has/can have the calenlation on paper on the
skill of calculus?! [1] Nowadays, we work not only with a programming language,
but with a complementary programming environment while we create a program.
During the study we manage the language and the environment as a complex
unity, because for example a good debugging function, which does not belong to
the language. can help to get the solution with less thinking.

This paper presents the practice of the first four steps of methodical pro-
gramming [2] —coding, testing, debugging, error correcting —and compares the
languages and environments from our point of view. It is expedient to separate
the features of the language and the environment according to the followings [3]:

¢ Linguistic aspects
- Understandable keywords
— Simple and consequent program-structure
— Simple coding, casy learning
e Developing enviromments' aspects
— Highlighting keywords
— Coding supporting services (i.e. intellisense)
— Compiling, error messages
— Debugging system

Our study is restricted to the family of imperative languages.

Let us have a thought experiment: let us imagine ourselves in our learners’
shoes! They have the (not absolutely formal) specification and the algoritlim
ready. The next step is coding.

1 Arabic/Indian numerals vs. Roman numerals, ..., Chinese numerals.

Expressiveness of programming languages and environments: a comparative study 113

Instead of the regular “Hello world™ example. let us take the following pro-
gram-item as the basis of comparison which performs our task: a sequence of
integers is given. Let us decide if there is any even number in the sequence.

During the programming, the first step is to specify the program, than create
the algorithin.

The specification follows the conventions which are applied at the Eotvos
Lorand University. (Its formal or informal feature is not important: the point is
to provide exact information for the solution method.)

Specification:

Input: N e N, Numbers € Z*, bEven: Z — B
[B = { true, false } — Set of Boolean values]
Output: Even? € B

Precondition: Length(Numbers) = N

Postcondition: EBven? = 3i € [1..N]: Even(Nwmbers;),

true, if @ =0 (mod 2)

where Even(r) =
false else.

We only present and study the main part of the algorithi. We discuss the
read and the write procedures with relation to the programming language and
environment, because those will be different at that point.

Algorithm:
Procedure [s_There_Any_Even(Constant N: Integer; Numbers: tArray:
Variable Even?: Boolean):

Variable
I: Integer

L= 1

While I < N and Not Even(Numbers|I])
I=I41

End While

Even? = (I < N)
End Procedure

At first let us examine what are the features which support the legibility of
the algorithm. The example presents them well: “talkative™ variable, type and
procedure names; highlighted (in this case bold) keywords, marking the begiuning

114 Gdbor Torley

and the end of the program blocks, and organising thew in one nnit (every unit
in a different paragraph). We can realize that one part of them is a stylistic
question. it is up to the programmer to choose. but the other part depends on
the language and the enviromment.

2. Interesting progranuning steps

We are examining four programiming languages/language-family which are in
use in primary /secondary education: (1) Pascal/Delphi, (2) (Visual) C4+4. C#.
(3) Java, (4) Visual Basic. We add to this collection two vounger script langnages:
(5) Ruby and (6) Python, which can have a bigger role in teaching programming
in the future.

We investigate the impact of the knowledge, and the existence or the non-
existence of the coding rules on the process of coding: or rather the services with
which the program editor, the developing environment supports the process of
coding. We pay special attention to the solutions of 1/0.

I the next chapter we will explore the information content and the rigidity of
the error messages, i.c. when the prograim is declared to be ready by the compiler
and how nmch hidden error can remain for the next phase.

In the testing phase we compare the different enviromments in terms of the
existence of the debugging system.

2.1. Program editing

The fact that programming languages are quite similar to the English lan-
guage can remove some of the difficulties of Hungarian learners. So if they have
at least basic English, this can help the understanding and facilitate the process
of coding. We will not review the description of envirouments and languages.

2.1.1. Pascal/Delphi

In Hungary Pascal is the most widely used language in educational environ-
ment for teaching programming. We present two environments: the “classical”
Borland Pascal 7.0 (BP) and Borland Turbo Delphi Explorer?. The latter one is
available for educational purposes for free. There is an other free enviromunent,

2 http://wuw. turboexplorer.com/

Expressiveness of programming languages and environments: a comparative study 115
2 guagi Y

called Free Pascal®, which is similar to BP’s look and its operation. We will not
discuss this in this paper. The Pascal language [4] is the programming language
of professor Nikolaus Wirth for educational purposes.

File Edit Search Run Compile Debug Tools Options Window He X |
[8]——————————— EUEN_ENG.PAS —m——————————— |
Procedure Process(N: Byte; Numbers: tArray; Uar Even: Boolean); N |

Uar
I: Byte;

ven:=False;

Procedure Output(Even: Boolean);
Begin
If Even Then Writeln{’I found an even numbher?’)
Else WritelnC’'l did not find any even numhe
LEETUEITH

End
49:30
| F1 Help F2 Save

F3 Open Alt+F9 Compile F9 Make Alt+FiB@ Local menu

Figure 1. Borland Pascal 7.0

The program-structure can be easily followed and memorized. There are sep-
arate sections for constants, type definitions, variable declarations, and program
body in every procedure and function. [5] According to the coding rules, one
of the main features of Pascal language is that it is built up from the bottom
to the top i.e. declaration should precede application. Thus, in a procedure, a
variable can be used only if it has already been declared; and a procedure can be
called only if it has already been declared (at least its head has been declared by
forward). Arrays are static (although in Delphi there is a special dynamic array
as well), that is why the length of the array should be known at compiling (more
exactly: the type of the index should be fixed), i.e. at coding. [6]

Pascal is a good example of understandable keywords as well. The structure
of this language can be easily manageable with basic English. Using of 1/0 is
simple, commands relate unambiguously to read/write (read. readln, write,
writeln). It is beneficial that the language does not make a distinction between
the lowercase and uppercase letters, so there is no need to spend extra time to
memorize them.

3 http://wuw.freepascal.org

116 Gdbor Torley

There can be errors because of the fact that not every type identifier belong
to the protected keywords of language (i.e. byte, word, integer). In the type
declaration section the following type definition can occur: byte = string, which
the compiler will not sign as an error. Obviously, the programmer will find type
conflict, if he/she wants to use byte as positive integer afterwards.

In Pascal, the parameter passing without access permission implies serious
danger. Also, it is hard to understand how to match the parameter passing with
Const.

The language is not always consistent. It separates the actual parameters
with comna, the formal ones with semicolon; such as in the case of semicolons
that should be theoretically put to every end of line; this rule is not true; see the
case of if-then-else.

The designation of the beginning and the end of complex structures is not
uniform either: i.e. begin-end, record-end, while-end, repeat-until.

Branches can he nested, so seemingly ambiguous structures can be created:

if a=5 then
if a=4 then
else writeln(a);

The above code-part illustrates the “dangling else” problem (it is true for
Ct++, C#, and Java as well). From the code, it is not clear to which condition
the else branch belongs. In this case, the language does not require the use of
begin-end, which would make the dilemma clear.

Let us look at BP first. Figure 1 shows well that the language’s keywords
are highlighted (in white) and digits and strings are presented in different colours
(blue and lilac).

Similarly, in Delphi we can create console programs the same way (like above)
if we use the APPTYPE CONSOLE directive. Because of its likeness we will not
discuss this service of the Delphi environment.

The component-oriented “face” of the environment differs a lot from the
above. This system thinks in an object-oriented way, it offers this paradigm.
Our program will behave as an object; the components manipulate the object’s
variables through the object’s methods. How does it affect clarity? Because of
the paradigm-change and the component-oriented way, the implementation of the
write/read greatly differs from the way discussed above. The main part (Process
procedure) is the same in terms of coding (see Figure 2).

4 The user can set freely the colours, the figure shows an example.

Expressiveness ol programming langnages and environments: a comparative study 117

procedure TEven.b_NumbersClick(Sender: TObject);

Var
I: Byte:
IsEven: Boolean;

begin
I:=0;
While (I<=(StrToInt(N.Text)-1)) and ((StrTolInt (Numbers.Cells[I,0]) mod 2) <> 0) do
Begin
Inc(I):
End;
IsEven :=(I<=(StrTolInt (N.Text)-1)):
If IsEven then ShowMessage('I found an esven number'')
else ShowMessage('I did not find any even number!');

i

| end;

Figure 2. Delphi — Main part

(; Even number

| found an even number!

Figure 3. Delphi — “input-ontput”

The difference between input and output (see Figure 3) raises the question
whether we can bridge it on algorithm level? Should we bridge it at all? In case
of a visnal developing environment, where the representation of the input and the
output is done with the help of components, the preparation should be “visual”
as well. The role of the 1/0 part in the algorithm (which we did not discuss in
detail previously) is hardly more than to specify this information. Thus, in an
environment like this, when we organise I/0, a lot of time is needed for coding.

118 Gdbor Torley

The highlighting role of colours are the same like at BP.

IsEven :=(I<=(StrTolInt(N.Texy)-1)):

If IsEven then ShowNessag property Text : TCaption; ' Text Property
else Shoulessag

H o
end: i Text - System.string

end.

Figure 4. Delphi — “intellisense”

During program editing—like in other 4GL environments- the editor helps
the programmer to choose which method or property of the component he/she
can reach. So he/she does not need to know exactly the identifier and the parain-
eters’ type by heart (see Figure 4). There is additional online help as well: the
corresponding brackets are marked with the same colour when we pass them or
stay on them. This function can help to prevent and explore bracket-errors.

2.1.2. (Visual) C++, C#

For writing non visual C-++ programs. there is a widely used, free editor:
Dev-C++.°

The C language and its descendants are more permissive than Pascal, which
we have discussed above. There are no sections for type-definition and declaration.
We can declare variables wherever we feel it is needed. The language is built up
bottom-up, like the previous language.

Many people commend the C language’s descendants for the reason of their
compactness. Ior example, program blocks can be easily framed (by { and }):
however, they still are segregated clearly from their enviromment. (See Figure
5) For this compact way of drawing, we can mention some negative examples as
well, the “++7 and “-=" operators [3]. The difference between “i++” and “++i”.
or rather “i--" and *--i”, is not clear from the code, thus they do not support
the code’s legibility and lucidity. The side-effect of these two expressions is the
same; the value of the variable i will be incremented (and most of the time it is
used for this function), whereas their major effects are different; when evaluating,
the expression “i++" contains the original value, whereas “++i” contains the
incremented (by 1) value. The mechanism of #*i--" and “--i” is the same, except
for the fact that they decrement the value /t variable i. Therefore, in the case of

 http://www.bloodshed.net

i 1) oty TN e ‘.,.. . ll(J
Expressiveness of programming langnages and environments: a comparative study

a complex expression. the programmer has to be careful which operator he/she
uses from these two ones. which differ only slightly syntactically.

The kevwords are understandable, but in the case of read and write ~cin”
and "cout': do not refer unambiguously to the function of read and write: more
“etymology™ is needed to understand the keywords better. However. the language
is expressive in the way it signals the direction of the datastream: (i.e. cin >> n,

the value will “go™ from console input to n).

void |in(int n, int nwrbers(])

{

for (int i=0; 1i<n; ++1)

(.
cout << “"Flmase tvns the " << (141) << 7. neder: 3
cin >> nubers[i);

}

¥

void process(int n, int nubers(], boolé IsEven)

{
int i = 0;
while ((1 < n) &&{(numbers(i] % 2) !'= 0))
{
14+
}
IsEven = (i < n):
}

void out (bool IsEven)

{
if (IsEven) cout << !
else cout << "I «ia wer &

int main(int argc, char *argv(])
{
int n:
cout << "Il voatagn w2ll g ' ;
cout << v % s avi ey ;
cin >> n:
int nurbers(n]:
in(n, nubers) ;
bool IsEven = false;
process (n, hwbers, IsEven) ;

Figure 5. Dev-C++

Error source can be an accidentally written blank instruction (;) instead of
the body of complex instructions. Like in C4+4 and Java, if the programmer
does not write the break statement at the end of a multiple branch (switch),
not only the branch where the condition is true will be chosen. but every other

120 Gabor Torley

branches below it as well. Thus. its mechanism totally differs from the “classical”
if-then-else. The compiler does not require the break statement. so because
of this deficiency. there can be errors. However, the C# compiler requires the
break statement to be put at the end of branches.

C++ s strongly typed langnage, though during the check of the type accu-
racy, the compiler does not mark any error at a type conflict, just gives a warning
and it converts the type automatically. There are times when it does this prop-
erly, but other times not, thus an extra error source is introduced into the code.
and as a result, its distinctness decreases as well.

The C-like languages” common feature is that they differentiate the lower-
and uppercase letters at identifiers. The disadvantage of this is that the methods
(as well) should be retained letter-correctly. On the other hand it is true that
when ereating one’s own identifiers it is possible to build on this feature: when
developing the own name conventions it can be used with henefit.

The visual brother of C4++ [8] can be downloaded freely. Visual Studio
2008 Express Edition® (VS) contains C4+, C# and Visnal Basic languages. The
Express edition covers just the basic functions. but it is enough for secondary
school education.

I Figure 6. we can see the main part of the solution of our example task.
The language differs the access to the object level and class level methods. It
marks the former with =::7, the latter with “=>". But is it possible to explain
this difference for a beginner in programming? There is a lot of “unnccessary”
information in the source code ie. component initialization, which suggests a
“complicated hmage™.

privare: System::Void b_Search_Click(System::0bject* sender, System: :EventArgs® e) (
ine 4, =03
int n = System::Convert::ToInt32 (N->Text);
while ((1 < n) && ((System::Convert::ToInt32 (Numbers[i,0)->Value) % 2)
{
i+
}
bhool isEven = (i < n);
1L (isEven) MessageBox::Show ("I fcund an aven nwd=r'");
=lse MessageBox::Show("I dicd not find any sven nwder!'"):

Figure 6. Visual C'++ - a typical code-part

Y http://www.microsoft. com/express/

Lixpressiveness of programming languages and enviromments: a comparative study 121

The cnviromment has the same arvchitecture as Delphi. The titles of the
methods and the properties, which are important for us. are more nnited than
in the case of Delphi. so it is easier to notice them. For example, in Delphi, the
button caption is called Caption, but the edit box is called Text, while VS calls
both by the latter name.

Like Delphi. this enviromment also helps with drop-down lists to find the

required component.

private void b_Search_Click(ohject sender, CLventicus e)
{
int 1 = 0
int n = System. arve:irn,.ToInt32 (N.Text):
while ((i < n) && ((System. 2vvert,ToInt32 (Numbers([i, 0] .Value) % 2) != 0))
{
i++;
}
hool isEven = (i < n):
if (isEven) = vicbox . Show ("I found an even nunher!'');
else M =tu,.Show ("I did not find any even nunnber!");

Figure 7. C#

In Figure 7 we can see the solution on C'#. In comparison with C'++4-, it can be
scen that this language [9] is clearer, more understandable. There is a possibility
to write console application, like with Delphi. The operator of the class and object
level method is united (.), and in parameter handling the parameters segregate
clearly i.e. the value of a parameter: int a, the reference parameter: ref int a.
and the output parameter: out int a. In that case it we need a function with
more than one output, we need to create output parameters. The commands of
1/0 refer clearly to their roles (Read, ReadLine, Write, WriteLine).

The developing environment highlights more keywords. the heads of proce-
dures are more readable and the source file contains only the source code; the

details of components are in an other file.

2.1.3. Java
For Java {10} programming there are free developing tools as well. One of
them is Eclipse”. The language's coding rules are similar to C+44-. Nevertheless

some specific features have to he mentioned.

" http://www.eclipse.org/downloads

122 CGiibor Torley

Javais an object-oriented language as well, so before starting on something,
we need at least a class definition and a main method. Even if we would create
a “Hello World™-like program. we should type at least six, maybe. meaningless
lines beside “main part’s” one line. 1s it helpful for performing the task? Should
we be familiar with object orientation when writing these kind of prograins? (See
Figure 8.)

import java.util.®;
public class Even {(

iae

arya

public static void main(String[) args) (
7/ 1nnh Ruro-ganerated wethod scub
System.out.println("This program decides 1f there 1s any even number in the array.”) ;<
int n = 0;
System.out.println(”Please type the amount of the nubers!”);
Scanner read = new Scanner (System.in):
n = read.nextInt():
int([] nuwers = new int[n]:
in(n, numbers):
boolean isEven = process(n, numbers);
out (isEven) ;

Figure 8. Java — main method

The parameter handling in Java differs from the languages discussed before.
It knows only value parameters, so a copy is made of the value at the parameter’s
address. This copy is used by the method, instead of the original one. That is
why the value of “isEven” should be defined by a function (see Figure 8). This is
true only for simple data types. E.g. in the case of an array, a copy is made about
the reference, so the changes in array will remain. It is a pity that in this issue,
the roles of the language are not united. Just declared values can be delivered as
parameters.

The philosophy of the language is not uniforin in ters of [/0. The method of
write (System.out.println) shows well its goal and function: however the read
method is more complicated. In the example above we used the Scanner class’
method. It is evident that the read method looks like an assignment so this takes
the code further from algorithmic language.

The developing enviromment supports the programmier in a lot of ways. Be-
voud the tools recognized so far, in the case of parenthesizing, the environment
inserts the closing parenthesis during programming instead of the prograinmer,

1 9 1 3 v 2 dv 12;;
Expressiveness of programming languages and environments: a comparative study

public static boolean process(int n, int[] nubers)
{

int i = 0;

while {(i < n) && {(numbers([i] % 2) != 0))

{

1++42
)
return (i < nb;

Figure 9. Java — process function

or, rather, if the number of the two types is not equivalent, it underlines the incor-

rect unnecessary parenthesis with a red line. When the cursor is on a variable’s
) 1 1 g . o Sarire O

name, the editor highlights all the variables with the same name (see Figure 9).

2.1.4. Visual Basic

Visual Basic (VB) [11] is part of the above mentioned VS environment. In
fact, VB is an implementation of the Basic language, which intends to extend the
l)asi;s‘ language’s raw architecture with structured and object-oriented elements,
but tlm.s'(; are linked strongly to the developing environment. It is not simple to

proceed because of the obsolete roots. [12]

Private Sub b_search_Click(ByVal sender As System.Object, ByVal e A:
Dim i As Enteger
i=0
Dim n As Integer
n = Convert.ToInt32 (Me.N.Text)
Nurdbers (n, 0).Value = 0
While i < n ind Convert.ToInt32 (Numbers(i, 0).Value) Mod 2 <> O
i+=1
End While
Dir isEven As Boolean = (i < n)
If isEven Then
MessageBox.Show ("I found an even nwaber!'")
Else
MessageBox.Show ("I did not find any even nunber!™)
End If
End Sub

Figure 10. Visual Basic

From a lingual viewpoint, the VB differs from the first three ones. ()]m
statement should be written in one line, so it is unnecessary to separate them by

124 Gibor Torley

semicolon. Although the language is typed, it is not so strict as the Pascal-hased
oues. “Dim”, which is used for declaring variables (see Figure 10) defines the
size and the type of the elements of the variable. It is a positive example that a
special keyvword (ByVal) differentiates the parameters passing by value from the
parameters passing by address. Also, there is a specific keyword for functions
(Function) and procedures (Sub), so it resemnbles more to algorithmic language.

It is very helpful to understand that cach loop and branch has an easily
recognizable and learnable keyword for beginning and ending (i.e. While ... End
While), so it is simple to write a readable code.

The environment, does its best to “find out” which keyword or method the
programmer wants to use. As the programmer begins to write something, the
alternatives immediately appear on the screen. However, in this system, it is ob-
jectionable that the cursor feeds a line when we select the name of a component
by pressing Enter. But the writer of the program has not yet gotten the corre-
spondent property. By pressing Ctrl-Enter, the problem can be solved, and until
the selection of the right property, the cursor stays in the same line. This feature
is unique in VB, it encumbers the initial steps if the appropriate key combination
is not known.

According to the default settings, in every case, the compiler evaluates the
overall Boolean expression. This is why it was necessary to add an even number
to the end of the array (as N + L. element) for stopping the loop. It is not helpful,
because it makes us deviate from the algorithm. According to our experiences. this
kind of evaluating strategy occurs just in this environment out of the examined
ones. The remaining environments use the lazy strategy as default.

2.1.5. Ruby

It is a very young language [13] (it was “born™ in 1995), which inherited much
from Perl, Python and Smalltalk languages. Like the languages discussed above,
Ruby’s developing environment® is free as well.

In comparison with the others, this language itself looks ditferent. It differs
a lot in the application of the keywords.

Figure 11 shows that the way how the program handles the data types. This
is not so strict: the type of a variable can be known only at assignment (like in
PHP and in Perl). This syntactic compliance does not support the legibility of
the program and it is prone to generate errors.

8 http://www.rubyonrails.org/down

Expressiveness ol programming languages and environments: a comparative study 125
1 -def input(numbers) ,
2 puts 'This program decides 1f there 18 an even nwaber in the array.
3 puts 'Flease type the amount of the nubers!'
4 n=uv
5 n = Integer(gets)

6 - foriini..n

7 puts 'Flease type the ' + i.to_s + '. nuber: '
8 numbers[i] = Integer(gets)

9 end

10 return n
11 end
12
13 - def process(n, numbers)

14 i=1
15 - while (i <= n) and ((numbers[i] % =) != 0)

16 i=i+1
17 end
18 return (i <= n)

19 end
20
21 -def out(isEven)

22 - if (isEven) then puts 'I found an even number!'
23 else puts 'I did not find any even mudter''
24 end
25 end
26 H#ihain progrom
27 numbers = Array.new
28 n = input{numbers)

29 isEven = process(n, numbers)
30 out(isEven)

Figure 11. Ruby

Parameter passing functions are similar to those in Java.

It can be disturbing that a function does not differ radically from a procedure.
Considering their heads, they are the same. The only difference between th(‘lll.is
the “return” statement somewhere in the program body, which gives a value for
the procedure, and so transforms it to a function.

The syntax of the write and the read reveals incomprehensible differences. In
case of 1'(‘é;(li11g or writing a string, the name of the variable should be written after
the statement or the string constant (gets ’text’, puts s). In case of numbers,
the reading seems to be an assignment, just like in Java (n = Integer(gets)).
at writing, there is a need for type conversion (puts n.to.s).

The language is very young, that is why the program editors are not 1'(?21(1__-"
for having all of the “comfort” services. It is true in general (like in the case of

1206 Gédbor Torley

the SciTE program in Figure 11) that it does not support the programmer with
anything except for highlighting the keywords.

2.1.6. Python

This language [14] is also very young; it was created in 1991. It has a free
programming editor too.” The performance of the task can be seen in the editor.
which can be installed by the default package:

5

=3~ coding: cpliSO -*%-
read (nubers) :

n = inpuc (' Fleass t (NS} 1 & arrayl v)
i range (0, n):
nurbers.append(input (F leass +svr (i+1)+' . nudier')
n
procesa(n, numbers):
i=0
vis i < n o= (numbers[i] % 2) != 0:
1 =731
(i < n)
¢ our (isEven) :
isEven:
3 ¢ %1 2 Al ¥
Ly ! 1 find any =ven modiey
e, Shis prograw desidez 18 thers i3 an even mads=r 1n the ar

]
n = read (nunbers)

isEven = process(n, numbers)
out (isEven)

Figure 12. Python

The structure and the linguistic elements of the program look like those of
Ruby (latter considers Python one of its parents). Compared to the previous
languages, it has a new “invention”. There are no Begin-End pairs, the corre-
sponding program blocks are in the same paragraph, so the programmer should
write the parts belonging to different loops or branches in separate paragraphs,
otherwise the program will not function as he/she expects it. This is the so-called
“margin rule” which provides the legibility of the code. Let us recognize that this
makes the coding casier because of the accordance with our algorithmic language.

9 http://www.python.org/download/

1
~

Expressiveness of programming languages and environments: a comparative study 1:

Its coding rules are identical to those of Ruby.

The counting loop of the language is strange: its syntax is uncommon and
fromn this it is hard to find out the semantics. The “for i in range(l, n)”
suggests, that the loop-core will run in case of 1 < i < n. That is not true,
because the loop-core will run in case of 1 < i < n, that is why Figure 12 shows
that the loop will run n times between 0 and .

The program editor is very simple. It does not provide more services, except
for the colouring in supporting the legibility.

2.2. Compiling, the correction of syntactical and static semantical errors

The content and the quality of the compilers of languages and their informa-
tion (error messages) belong to the feature of the environmments. It is important
that from the error message the programmer would know what kind of error had
occurred, where the error could be, and how it could be solved.

What makes an error message good? It is good if the error message is neat,
polite, consistent, positive, constructive and uses active idiom. It describes the
error well, and, if it is needed, the right page of the Help menu can be reached
directly from the error message [15].

In this paper we cannot show and analyze examples of every kind of errors,
that is why we discuss only two types of errors: Let us assune that the student
have typed the identifier of one of the statements/variables in a wrong way, and
he/she has not closed a program-block.

It is the feature of the Borland Pascal environment’s compiler that it stops
at the first given error and it shows only that one, so if there are more errors, the
code should be compiled at least as many times as the munber of the mistakes
in the program. Time could be spared, if it highlighted all the errors. However,
like this. the impact of the subsequent errors does not encumber the programmer,
which is beneficial from the educational point of view.

The error messages are not very informative and they are not always clear.
We get the same error message (“unknown identifier”) if we type wrongly either an
identifier of a variable, or a name of a procedure (see Figure 13). It is beneficial
that in case the compiler would find an error, the cursor would jump to the
incorrect word or at least to its environment. The figure shows that the error
message does not draw the attention to the missing End, it will be highlighted
only after having corrected the slip of “the pen” (see Figure 14).

Or, probably it is not even highlighted in this case. The compiler misses the
semicolon: however, the real error is the missing End. Directly from the error

128 Gabor Torley

Compile Debug Tools Options Window Help
KUENCENG. PAS i ————————————————————{

Edit Search Run_

File
[w]

Error 3: Unknouwn identifier.
Uar
I: Byte;

I:=
Nhil!.:: CI<=N> and <Not Even) do |

({Numbers[I] mod 2> = 8);

End;
Procedure Output{(Even: Boolean);
egin
If Even Then Begin Urilen<(’l found an even numbepr?’)
1se WritelnC’I did not find any even number?’); !
Rsadkey;
nd;

49:22
| F1 Help F2 Save F3 Open

Alt+F9 Compile F9 Make

Local menu

Figure 13. Error message in BP

_File Edit Search Run Cc e Debug Too
[8]l—————————— EUEN_ENG.PAS

_Options Window Help

Error 85: expected.

Var
I: Bytes

Begin
lliuen:=False;

=13
While <I<=N> and <(Not Even) do
Begin
Even:=(C(Numbers[I] mod 2> = @);
Inc<I);
End;
End;

Procedure Output(Even: Boolean);

Begin

If Even Then Begin Writeln<’I found an even nunbher?’)
Else Writeln<’l did not find any even number?’);

Readkey;

nd;

50:11 u
| F1 Help F2 Save F3 Open

Alt+F9 Compile F9 Make A1t+F1@ Local menu

Figure 14. The error message is not accurate

message, a beginner programmer will not recognize what he/she has done wrong.
The Help is useless, unfortunately.

In conclusion, the error messages are neat but they do not provide much help
and they are not exact enough.

Delphi prints out not only the first but all the possible error messages. More-
over, it gives error signals already during the coding process: The compiler in the

Expressiveness of programming languages and environments: a comparative study 129

background warns us contimously about the actually committed syntactic errors
(sce left colummn in Figure 15). At compiling it selects the erroncous lines and
indicates the messages several times if there are more mistakes in the program.
This solution identifies better where the errors have occurred.

o sauctue ? X [Bupsos
< Yok procedure TEven.b_NusbersClick(Sender: Tobject); ~
© Undedlared identfier “Shhowtessage’ & Ine 53 (53:23)
O Expected END bit received ELSE at bne 54 (54:12) "::’ s
¥ il Cloons IsEven: Boolean:
+ __| Variables/Constants
¢ Juses begin
Iieu
While (I<=(StrTolInt(N.Text)-1)) and ((StrTolnt (Numbers.Cells(I,0)) mod 2
Begin
Inc(1):
End;
IsEven :=(I<=(StrTolnt (N.Text)-1)):
If IsEven Lhen Begin ShipuMessage ("1 fuund an et)
else ShovMessage (‘I did not find any
end;

Figure 15. Delphi identifies the errors before comnpiling

A mistake detected already during the coding. before the compilation is set
off. may save a lot of time for the developer. In the case of our example two
error signs show up during the coding process. which help to detect the problem,
even to find the solution: the red nnderlined “ShhowMessage™ and “else” draw
attention to the wrong “spelling™ as well. The error messages are neat, correct,
they define the problem. The Help supports us well.

The compiler of Dev-C++ informs us about all of the errors.

void out (hﬁol IsEven)
{

=] @ Even

. I:] even.cpp

else cout << "I d1d nor Tind any =ven nubier nrs

|
|
{
! (IsEven) { ccout
!
f)

1

gg Forditd lizenetei lTa] Erdforrésok ! [ﬂh Fordité kimenete ! Q/ Nyomkovetés ! @ Keresés eredménye | @ Bezér |

Sor Féjl (Uzenet

C:\Documents and Settings\pezsgo\... In function ‘void out(bool)"
27 C:\Documents and Settings\pezsgo\... ‘ccout’ undeclared (first use this function)

(Each undeclared identifier is reported only once for each function it appears in.)

28 C:\Documents and Settings\pezsgo\ .. expected primary-expression before "else"
28 C:\Documents and Settings\pezsgo\... expected *;' before "else"
32 C:\Documents and Settings\pezsgo\... a function-definition is not allowed here before '{' token
32 C:\Documents and Settings\pezsgo\... expected ", or ;' before '{' token
44 C:ADocuments and Settings\pezsgo\... expected '} at end of input

C:\Documents and Settings\pezsgo\ .. (Build Error] [even.o] Error 1

Figure 16. C++: error messages do not help efficiently

130 Gabor Torley

The error list above helps to detect the mistyping easily, but the remaining
five error messages do not express clearly that a closing bracket is missing. Irom
the error message, a more experienced programmer would find out that the num-
ber of opening and closing brackets is not equal, however, for a beginner, it does
not provide effective help compared to the effectiveness of the error inessages in
Delphi.

The error messages of Visual C++ have also very little information content,
just like the environment discussed above.

pravara: System::Void b_Search_Click(System::Object” sender, System::Eventirgs® e) (

int 1 = 0;
inc n = System::Convert::ToIntd2 (N->Text):
vhile ((1 < n) &€ ((System::Convert::ToInt32 (Nunbers(i,0)->Value) % 2) != 0))
(
it+:
)
boal 1sEven = (1 < n):
if (isEven) (NeessageBox::Show ("I found an sven n
else MessageBox::Show("! did not find any even nww .
¢ >
Show output from: Buld - Y % A
------ Build started: Project: Even, Configuration: Debug Win32 -----=
Compiling. ..
Paros. cpp
\Parcs.cpp(6) : error C2143: syntax error : missing ';' before ‘using’
e and g sual studio 2008\pr Forml.h(168) : error C2653: ‘MesssageBox' : is not
e and g studio 2008\projects\paros\paros\Foral.h(168) : error C2664: :v

Reason: cannot convart from 'const char *' to ‘Syst
No user-defined-conversion oparator available, or
Cannot convert an unmanaged type to a managed type

: :Mindows: : Forms: : IVin32Window ~*

e and sete \visual studio P P \Forml.h(169) : error C2181: illegal else without »
.\Paros.cpp(19) : fatal error Cl075: end of file found before the left brace '(' at ‘e: and \visw
Build log vas saved at “file://c: and sual Studie 2008\P \Paros\ 1dLog. huw'

Zven - § error(s), O varning(s)
weszsasses Build: 0 succeeded, 1 failed, O up-to-date, O skipped =sssssssss

Figure 17. Visual C++: Complicated error messages

The figure above shows that the first incorrect line is not highlighted, that is
why we have to click on the lines of the error list one by one. The error. which
warns about the mistyping, can be found simply, but nothing refers directly to
the missing closing bracket.

The compiler and the error handler of Visual C# are just like the language
itself more friendly and meaningful. Figure 18 shows that before compilation it
will be highlighted that there is a missing closing bracket. It is true that it does
not show the exact place of the absence but in an indirect way it encourages the
progranuner to couut the number of the beginning and the closing brackets. In
this phase. the mistyping does not show up. but after compilation it does occur.

’

If the variable “i” does not have an initial value, the compiler signals error
as well (see Figure 1R).

In VB it is very difficult to generate these kinds of errors deliberately, because
the enviromnent’s intellisense service actively pays special attention to use only

Expressiveness of programming languages and environments: a comparative study 131

the right identifiers, to have the beginning and the ending of every program block.
So if the student writes down “If condition™, and presses Enter, then “Then”
and “End If" will appear automatically.

rrivate void b_Search_Click(oklect sender, Fuwicivas e)
{

int i = 0;

int n = System. . uvelt,ToInt32 (N.Text):
while ((i < n) && ((System. cnwve «ToInt32 (Nwrbers(i, 0].Value) % 2) '= 0))
{
i++;
)
bool isEven = (1 < n):

1f (isEven) (MeessageBox.Show(”I found an even nuxber'”);
else [osageloz.Show("I did not find any even nunnber!"):

Q3Erors \0Warnings i) 0 Messages

Description) File Line Column Project
Q1 }expected Even.cs 41 2 Even_cs
QJ 2 Invalid expression term ‘else’ Even.cs 38 18 Even_cs

J 3 ;expected Even.cs 38 23 Even_cs

Figure 18. C#4 gives warning before compiling

The figure above shows a very unlikely error, but it is clear that the environ-
ment indicates what kind of syntactic error the programmer has made — without
compiling—Dby a blue underline and a message in the error list at the bottom
appears.

The information content of the Java's compiler is the same as the one we
have seen in the C# language.

Before compilation, the enviromment underlines the incorrect words and the
error messages show already the real problems. It is a good solution that the
system marks the incorrect lines with a red x. The typing errors can be fixed
by the “Quick fix” service of the environment. The environment pays attention
to the correct definition of the variables (see Figure 21), so it warns us of the
semantic errors as well.

Python and Ruby differ from the above discussed languages: as they are
script-languages, they are interpreted during runtime by the compiler.

Before runuing the program. the Python's interpreter checks the code. If it
finds ervor, it halts without any specific error message (“Invalid Syntax™).

132 Gidbor Torley

o] Private Sub b_search_Click(EyVal sender is System.Object, ByVal e A
Dim i A= Integer
3 = O
Dim n As Integer
! n = Convert.ToInt32 (Me.N.Text)
{ Numbers(n, 0).Value = 0
Uhile i < n And Convert.ToInt32 (Numbers (i, 0).Value) Mod 2 <> O
i {4= 1
End While
Dim isEven As Boolean = (i < n)
I1f isEven Then
MeessageBox.Show ("I found an =ven nuwmber'")
| End If
Elze
MessageBox.Show(”I did not find any even nunber'”)
End Elze
End Sub
i<

Q3Emors 1,0 Wamnings i) 0 Messages

Description Fie Line
Q1 Name MeessageBox' is not declared. Forml.vb 24
J 2 'Else’ must be preceded by a matching 'If' or ‘Elself’, Form1.vb 26
Q3 End' statement not valid. Form1.vb 28

Figure 19. Visual Basic: “Forced” error, correct error message

public static void out (boolean isEven)

(
a if (isEven) { System.ouwt.printlen("”I found an even number!'"”);
(2] else System.out.println("”I did not find any even number'"):
}
* Problems ! @ Javadoc L\ Declaration [E] Console
3 enors, 0 warnings, 0 infos
Description & Resource Path Location
= & Enors (3items)
3 Syntax eror on token "else", delete this token Evenijava Even_search/sic line 52
€ Syntax error, insert "} to complete ClassBody Even.java Even_search/sic line 54
€3 The method printlen(String) is undefined for the type PrintStieam Even.java Even_search/sic line 51

Figure 20. Java — every error will be highlighted

The figure above shows that the compiler uses the red colour. After having
corrected this error, we get the following message:

Contrary to the previous message this error message defines the problem well
and exactly.

The fignre above shows that we get the same error message (“Invalid syntax™),
but the compiler does not localise the error exactly and we cannot get any other
information on the error message which could bring us closer to the solution.

Expressiveness of programming languages and environments: a comparative study 133

public static boolean process(int n, int[] numbers)

{
int i;//7 = 0:
a while ((i < n) && ((nubers[i] % 2) !'= 0))
{
a The local variable i may not have been i Iized
}
a return (i < n);
}

Figure 21. Java gives warning before compiling if initialization is missing

Syntax error
out (isEven) :

isEver|
println "’

There's an error in your program:
invalid syntax

“I did nor find any even

7% Syntax error
out (isEven) :

isEven:

There's an error in your program:
gEantln 1 cownd an svsn reausertr expected an indented block

find any nurgser !

Figure 23. Python: exact error message

=t out (isEven):
1t isEven:
println "I found an ewven mader P_1

srint "I did not find any even mader '

Figure 24. Python: where is the error?

It is also as hard-—if not harder-—to interpret the error messages of Ruby.

From these two error messages we can recognize that there may be something
wrong with begin-end pairs, but there is not a single hint on the meaning of “$end”
and “kEND". The mistype error in line 22 (“pputs” instead of “puts”) will be

131 Gabor Torley

21 -def out(isEven)

22 - if (isEven) then begin pputs ' I found an even nuber''
23 else puts 'T did nor find any even number!'

24 end

25 end

26 #idain progrom

27 numbers = Array.new

28 n = input(numbers)

29 iIsEven = process(n, numbers)

30 out(isEven)

without rescue 1s usele
unexpected $end, expecting KEND

out<isEven)

Figure 25. Ruby: meaningless error message

identified during runtime, but only in case the input parameter of the procedure
“out” is true.

Due to the features of the language (script-language) syntactic and semantic
errors will be identified during runtime.

2.3. Testing, debugging, the correction of semantic errors
The dynamic semantic errors are more uncomfortable than the syntactic or
static semantic ones, because the program runs, but not correctly: it does not
execute what it is supposed to do. It takes a longer time to find and correct them.

The debugging system helps the programmer to explore these errors.

File

Edit Search Run Comp Debug Tools Options Window Help
EVEN_ENG.PAS —M8M8M8M8m8mM8M8
Procedure Process(N: Byte; Numbers: tArray; Uar Even: Boolean);

Var
I: Byte;

|

|

Begin i
i

[m]
Even: False

| F1 Help F? Trace. FB Step + ns Add Del Delete Alt+F1@ Local menu ,l

Figure 26. Debugging in BP

Expressiveness of programming languages and environments: a comparative st udy 135

What can be the expectation from a debugging system? When can it be
regarded good and useful? It is beneficial if the debugging functions are at the
same place ie. in the same menu; it is good if the view allows the code, the
content of the variables. and the output to be seen and examined at the same
time: and there should be opportunity to create breakpoints and to exccute the
program line by line, or procedure by procedure.

BP provides an easily manageable interface for the programmer (sce IMig-
ure 26). The values of the variables inserted onto the watch and the actually
necessary functions (on the bottom of the figure) can be seen in a separate win-
dow. Breakpoints can be inserted into the code for running just the incorrect
part line by line. All the tools of debugging can be found casily in the same menu
(Debug).

The errors during the coding process can be detected easily by these tools.
In this example the errors are: the lack of the initial value of the variables and

the incorrect loop condition.

+} Call Stack F X [Bupaeros
u_paros. TEven,b_NumbersChck(?77) ~ procedure TEven.b_NumbersClick(Sender: TObject): ~
10043da42 TControl.Clck + $63 i
100441282 TWinControl.WndProc + $49E var
10042abfd TButtonControl. WndProc + $71 I: Byte:
100441368 DoControlisg + $28 IsEven: Boolean;
:00441282 TWinControl WndProc + $49€
00451152 TCustomForm. WndProc + $4C6 ° begin
:00440a0b TWinControl.ManWndProc + $2F v P
S % (<3 While (I<=(StrTolnt(N.Text)-1)) and ((StrTolnt (Nwnbers.Cells(
B Watch List 7 X Begin
Watch Narne value - 0o T) s
F1 16 End;

7 IsEven E2171 Variable 'IsEven'i... @ IsEven :=(I<=(StrTolnt(N.Text)-1));
[Numbers.Ce... * ° If IsEven then ShowMessage('I found an even nwber'')

° else ShowMessage ('l did not Find any even number'')
°

end;
end.
Watches
%3 Local Variables 2 X
{u_paros. TEven.b_NumbersClick{77?) v
Name Value
+ Seff ([csinheritable), False, (0, ...
Sender £2171 Variable ‘Sender' na... "
1 16 3
IsEven E2171 Variable 'IsEven'ina... ¢ |
L 48: 1 Insert Modfied Code Design History

Figure 27. The debugging system of Delphi

VS and Eclipse have a common useful feature —unlike the two script-lan-
guages aud Dev CH+-—1 they can show pretty mmch information at the same
time and at the same place. It is very helpful that all of the local variables can

136 Gabor Torley

be seen automatically and in the code: and during the step by step execution, the
progranmier can get to know the value of the variables whenever he/she puts the
cursor over it, so the progrant’s inner state will be clear for him/her. This makes
it easier to debug because everything is at the same place, indeed.

Figure 27 shows a brilliant solution. The variables which are selected by
the programmer or which are shown automatically are on-the left side. In the
middle of the figure it can be seen how the cursor “shows™ the value of one of the
components. Evidently, the debugging system is easy to use.

Out of searching for errvors, the debugging system of visual developing envi-
ronntents is able to help to explore the structure and the inner function of the
current objects. The figure shows that the class level variables and their features
can be seen by clicking on “Self” on the left side.

35 Debug b «® | s 69+ Vaniables © Breskpants LS
- 70 Even|ava Apphcation) Nare Vae
= @ Even atlocahost 1094 & 5
= @ Tivead [man] (Suspended (teeakport at ine 39 n Even)) + mbers 5] (id=16)
= Evenprocersfrt, i) ine: 33 5 0

= Even man(Sting{]l ke 17
1 C\Program Fles\Java\rel 60_06\bn\iavaw exe (2008 07.28. 1300.27)

(1, 3,5 7,9

s Evenjava 85 Qutne
) 4 RN
- wmport Gaclxations
ivaul®
g = O, Even
public static boolean process(int n, int{] nuwbers) '/ N ':;‘:rn
(gy
int 1= 0: s . €4
while ((i < n) €€ ((nwdoers(i] % 2) != 0))
«
144;
) v
< >
(3] Console Vi Tasks = _‘_4::; o

Even Havs Applabon] C\Program Fles\lava\pel B.U_US\bwi\avaw exe (2008 07.28 130027)
Please type the 4. nuwber!

Please type the 5. number'

Figure 28. Java — all information is nearby

Eclipse’s debugger (IMigure 28) is the best in terms of arrangement. It shows
all information without problem. even the program’s output fits in to the screen
comfortably. The debugging system can be given a Boolean expression, so the loop
condition and the output value of the “process’ function can be seen separately.
The latter can be found by clicking on “Expressions™ tab.

Expressiveness of prograniming languages and environments: a comparative st udy 137

Visnal C# is a good example of using colours and messages of the debugging
systenn. o Figure 29, the breakpoint and the current incorrect line are well
highlighted and segregated (former in red, latter in yellow colour). The error
message is complete; it notifies not only the error but suggests a solution as well.

privats void b_Search_Click(cbject sender, LI e) =
(

4 3 o, Convevt. TolncdZ (H. Texc) : . =
while ({3 |1 ((Sy=tem.Convert.ToInt32 (Nurbers(1, 0] .Value) % 2) '= 0))
¢
1=+
3 #, ArgumentOutofRangeException was unhandied
scol isEven = (
1£ (19Even) Az index a2 engecéiyszett tatomsnyon Hind ssk. Az index nem lehet nagativ, és kisebbnak belllenrie 3 gyiRemény mérsténdl.
e Parameter neve: index
) Troubleshooting tips:
¥ ke ture the aruinerits Lo s wethod have vaid values. ~
) IF you are vecrh e with & collection, I8 & sure the inde < is ‘ess than e sce of the cclecton
" When using the dtwo-srgun e F thods with & Contobos & Ustliox, check the startindex parameter.
Gez general help for ths excepten. 3
a8
prreny e Seanch feo roen el vl .
+ oths ::vm;«-::pkuw o
o sender eat = “Sear
‘v Km26Ym 17Buttonm it O
o € Copy excepton detad ta the dgbowd
on s o
4 sEven faee ool

Frigure 29. C#'s debugging system - an error message with a lot of information

Dev C+ and Eclipse should be compiled and executed in a special debugging
mode in order to follow the inner life of the program. The disadvantage of the
former one contrary to the latter one is that the settings should be changed.
However, in Eclipse a simple click is just needed to switch to debugging mode.

The disadvantage of the developing enviromments of the two script-languages
in our study is that they do not have any debugging system. If we find a semantic
error. the programmer should print out the values of the important variables (see
IFigure 30). This solution takes a lot of work and a lot of time, morcover; a
complex problem could be explored in a more difficult way.

3. Sununary

From this comparison. we can see that there is no perfect language or envi-
romment: cach one has its advantages and disadvantages, too.

In terms of education, it is beneficial if the chosen language consists of easily
memorisable keywords and uses simple program structures. 1t is important to
realize how simple it is to write the first meaningful program, thus the first pro-

gram which has practical gain as well. A language is needed which is near to our

138 Gidbor Torley
13 -def process(n, numbers)
14 1= 1
15 #
16 puts '+ n.to_s
17 puts 'Entering intoc the leoop...'
18 - while (i <= n) or ((numbers[i] % =) != 1)
19 puts '1: ' + i.to_s
20 puts 'nwdbers(i]: ' + numbers[i]l.to_s
21 puts '{i <= n): ' + (i <= n).to_s
22 ftend of debugqing
23 | =
24 end
25 ek ging
26 puts 'Exiting from the loop...'
27 puts: *i3y ¥ +Lto.s
28 puts 't1 <= n): ' + (i <= n).to_s
29 REnd of debugaing
30 return (1 <
31 end

t 5
Entering into the loop
i:
numbers[il: 1
(i <= n): true
i: 2
wnberslil: 3
(i <= nd>: true

(i <= n): true
iz 4
umberslil: ?
(i <= n>: true
i: 5

‘process’: undefined method ‘%’ for nil:NilClass <NoMethodError)
from even.rb:41

Figure 30. The “debugger” of Ruby

algorithmic language, so that the student learns and understands the place, role
and operation of the basic elements of programming. Pascal’s strong (and strict)
typing, understandable and memorisable program-structure teaches the learner
not to forget to declare a variable, or to define a type: and during the program-
wming, always consider what and how he/she wants to use while implementing the
current procedure. The ad hoc variable declaration for the remaining languages
does not support this approach. Pascal is a good basis from which we can go on
towards object-oriented programming and/or 4GL developing system. The latter
can help to understand the object-oriented paradigm thanks to its visuality.
Compared to Pascal, the object-orientation of C++, C#, and Java languages

opens new perspective on linguistic level. C++ is too difficult as first imperative

Expressiveness of programming languages and environments: a comparative study 139

language, and to progress they should use C# and Java. They seem to be a better
choice due to their maturity and clarity.

VB has many beneficial features for beginners in programming: it gives a
readable and well-structured code, but the linguistic roots and the strong depen-
dence on the developing environment make it more complicated to go on.

The weak typing of the two meutioned script-languages does not facilitate
an advanced programming style, in addition, it degrades the legibility of the
program becanse more time is needed to understand the code compared to a
strongly typed language. Moreover, they have lot of error-possibilities. It is not
advisable to teach Ruby and Python as first languages. It is also questionable if
they have any benefit in secondary school education.

In terms of supporting tools to the legibility of the code, there was not any
significant difference between the discussed environments. It should be noted
that beyond highlighting the keywords, the environments with intellisense service
provide more help for programmers.

Between the debugging services of the developing environments—except for
the two script-languages and Dev-C++- - there were major differences. In terms
of error messages, the compilers of C++, Python, and Ruby were the weakest
because of their unspecific, irrelevant error messages. Delphi, Visual Basic, C#,
and Eclipse help directly to correct errors with their error messages.

There were questions about whether it is worth using an object-oriented lan-
guage/environment. The concept of an object can be introduced easily, but in
this case we should make our algorithmic language suitable for explaining algo-
rithmic thoughts in this paradigm. We need more study to answer how it affects
the efficiency of programming education in secondary schools.

The following method seems easier and more understandable for the students:
we concentrate only on the important lingual elements in terms of the algorithim
in the first phase of education when we teach programming theorems.

In this phase of education, it is not beneficial to apply a 4GL system or
oune of the mentioned script-languages for executing a programming tasks for a
variety of reasons: the C++ language is too difficult as first imperative language,
so Borland Pascal’s environment seems better to understand and teach the first
steps.

Later it is worth changing to a 4GL system, to get to know the object-orientec
programming and - just as well- to apply a new language for performing more
complicated tasks. As anew language we suggest a more sophisticated variation of

110 Gabor Torley

the C language-family: C# or Java, because of their already mentioned beneficial
features.

References

[1] D. C. Geary, Biology, culture, and cross-national differences in mathematical ability,
in: The Nature of Mathematical Thinking, (R. J. Steinberg & T. Ben-Zeev, eds.),
Lawrence Erlbanm Associates, Mahwah, New Jersey, 1996, 145- 171,

[2

Péter Szlavi, Laszl6 Zsakd, Methods in Teaching Programming (in Hungarian),
http://digo.inf.elte.hu/~szlavi/ProgModsz/SzlaviZsako.pdf.
3

Péter Szlavi, Valuation of the programming languages and the application systems
(in Hungarian),
http://digo.inf.elte.hu/~szlavi/InfoOkt/SzoftErt/IndSzoftErt.html.

[4] Kathleen Jensen and Nikolaus Wirth, PASCAL—User Manual and Report,
http://www.cs.inf.ethz.ch/~wirth/books/Pascal/.

[5] Gébor Torley, Programming in secondary school in visual environment, Diploma
thesis, LE6tvos Lorand University, Faculty of Informatics, Department of Teacher's
Training in Computer Science. Budapest, Hungary. 2005 (in Hungarian).

[6] Péter Szlavi, Specification, algorithm and program code, Edtvos Lorand University,
Faculty ol Science, Departiment of Teacher’s Training in Computer Science, Bu-
dapest, Hungary, 1996 (in Hungarian).

[7) B. Stroustrup, The C++ Programming Language, 3" edition, Addison-Wesley

Longman, Reading, Mass., USA, 1997, ISBN 0-201-88954-4.

Visual C++ Developer Center,

http://msdn2.microsoft.com/hu-hu/visualc/default (en-us).aspx.

Visual C# Developer Center,

http://msdn2.microsoft.com/hu-hu/visualc/default(en-us) .aspx.

[10] Java™" 2 Platform Standard Edition 5.0 API Specification,

http://java.sun.com/j2se/1.5.0/docs/api.

8

[0

[11] Visual Basic Developer Center,
http://msdn2.microsoft.com/hu-hu/vcsharp/default (en-us).aspx.

[12] Gusztiv Nagy, Programming languages in education, in: Computer science in higher
education, Programming Languages in Education 2005, Conference publication (in
Hungarian), http://agrinf.agr.unideb.hu/if2005/kiadvany/papers/E73.pdf.

[13] Programming Ruby-—The Pragmatic Programmer’s Guide,
http://www.ruby-doc.org/docs/ProgrammingRuby.

[14] CGuido van Rossum. Python Tutorial, http://docs.python.org/tut/tut.html.

[15] Monika Bélecz, Designing user interface (in Hungarian),
http://www.szt.vein.hu/~bolecz/szf/felhasznaloiFeluletek.doc.

[16] E. Horowitz, Fundamentals of Programming Languages, Springer-Verlag, 1983.

[17] N. Wirth, Algorithms + Data Structures = Programs, Prentice Hall Inc., 1976.

Expressiveness ol programming languages and environments: a comparative study

|11

GABOR TORLEY

EOTVOS LORAND UNIVERSITY

FACULTY OF INFORMATICS

DEPARTMENT OF MEDIA AND EDUCATIONAL TECHNOLOGY
BUDAPEST

HUNGARY

E-mail: pezsgo@elte.hu

(Received June, 2008)

